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Abstract
Stress transmission in planar open-cell cellular solids is analysed using a
recent theory developed for marginally rigid granular assemblies. This is
made possible by constructing a one-to-one mapping between the two systems.
General trivalent networks are mapped onto assemblies of rough grains, while
networks where Plateau rules are observed, are mapped onto assemblies of
smooth grains. The constitutive part of the stress transmission equations
couples the stress directly to the local rotational disorder of the cellular structure
via a new fabric tensor. An intriguing consequence of the analysis is that the
stress field can be determined in terms of the microstructure alone independent
of stress–strain information. This redefines the problem of structure–property
relationship in these materials and poses questions on the relations between
this formalism and elasticity theory. The deviation of the stress transmission
equations from those of conventional solids has been interpreted in the context
of granular assemblies as a new state of solid matter and the relevance of this
interpretation to the state of matter of cellular solids is discussed.

PACS numbers: 62.20.−x, 61.43.Gt, 81.40.Jj

1. Introduction

Planar foams consist of partitions of space by irregular cells and are observed in many natural
and man-made systems. Their ubiquity in nature is often due to evolutional processes that
have led to an optimization of mechanical or transport properties against weight constraints.
Much effort has been invested in attempts to follow the wisdom of Mother Nature and develop
materials with biologically inspired structures. This effort has resulted in a growing body
of knowledge on the characterization of the structure as well as on the understanding of
the geometry of the cells in terms of the nonequilibrium dynamical processes that generate
them. Essential to this entire field is a basic understanding of the relations between the
internal structural characteristics of such media and their macroscopic properties [1]. Such
an understanding would be of use to a wide range of applications, such as design of high
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performance and smart materials, bio-artificial technology and the food industry, to name only
a few. A corner stone in the study of cellular materials is the work of Gibson and Ashby [2] who
employed various approximations on ordered cellular structures to estimate the mechanical
properties of cellular networks in general. While that work has significantly improved the
theoretical basis for stress calculations, it has failed to provide a rigorous relation between the
local microstructure in general disordered systems and the local stress field. It has become
increasingly evident in recent years that the lack of such a first principle relation stands in the
way of progress both on the theoretical and the technological fronts.

It is conventional to relate constitutive structural data in solids to macroscopic properties
by integration over microscopic variables [3–7]. In this approach one starts from a given
constitutive stress–strain relation on a judiciously chosen microscopic lengthscale and coarse-
grains this relation until it applies to a suitable macroscopic lengthscale. This paradigmatic
approach has been automatically adopted in recent era for cellular solids but the main problem
has always been the translation of the local cellular structure, which can be arbitrary in general
systems, into local elastic properties. The question whether it is really necessary to go down
this route at all has not been seriously addressed. The results in this paper suggest an alternative
approach that obviates the problem of finding the elastic constants altogether.

On the conceptual level, the problem is the following: suppose a cellular system, whose
structure is known in every detail, is in mechanical equilibrium under a set of forces �g acting on
its boundaries. Suppose also that the properties of the material constituting the network are well
characterized. The questions are: (i) how to describe the discrete field of forces transmitted
by the cell walls as a continuous stress field? (ii) what are the equations that govern this field
(the stress transmission equations)? and (iii) how do different microstructures affect the local
stress? In d dimensions it takes d2 conditions to determine the d × d stress tensor σ . Force
balance gives d conditions,

�∇σ̂ = �g (1)

and balance of torque provides further d(d − 1)/2 conditions—one for each axis of rotation,

σij = σji . (2)

Equations (1) and (2) give altogether d(d + 1)/2 relations and therefore additional d(d − 1)/2
equations (one in d = 2 and three in d = 3) are required to solve for the stress components.
These ‘missing’ equations must consist of information about the constitution of the material—
the constitutive equations. In conventional elasticity theory, this second set of equations is
obtained by imposing compatibility conditions on the strain field and relating the stress to
the strain through constitutive relations that are independent of the balance conditions. While
equations (1) and (2) couple the stress to the external loading, the constitutive equations relate it
to the properties of the medium and determine how the stress fluctuates due to spatial variations
of these properties. In cellular systems, these variations are governed by the microstructure
and so it seems that there is no escape from the problem of structure–property relations. Yet,
what is the property that the structure needs relating to? The basic issue is not how to relate the
structure to elastic constants, which we can then plug into the compatibility relations. Rather,
it would suffice to find d(d − 1)/2 relations that couple the structural information directly to
the stress field.

A development in the study of granular systems has provided an unexpected key for
progress on this problem. In a recent paper, Ball and Blumenfeld (BB) [8] have formulated
a new theory for stress transmission in two-dimensional marginally rigid granular assemblies
[9].1 In particular, they have derived a constitutive equation that couples the local stress
1 Although the formalism has been developed in the context of rough and infinitely rigid grains it appears to apply
to systems of finite rigidity as well, as long as there are on average three contacts surfaces per grain.
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to the local geometry. Marginal rigidity is a new state of solid matter, whose existence
has been verified experimentally [10]. In this state the number of intergranular contacts in
the system allows to determine the microscopic force field from statics alone and therefore
the macroscopic stress is independent of the stress–strain data. BB have further shown that the
new theory predicts that the symmetric divergence-free stress field is the Airy stress function
[11], recovering a result of conventional elasticity theory and so confirming the redundancy
of the stress–strain relations in marginally rigid systems.

The aim of this paper is to adapt the BB formalism to planar trivalent cellular structures
and derive a constitutive relation between the microstructure of a model of such systems and
the stress field that develops in them under external loading. To this end, an exact mapping is
formulated between cellular networks and granular assemblies at the marginal rigidity state.
By decoupling the stress from the strain, the new theory obviates the problem of structure–
property relationship in the traditional sense and provides a direct structure–field relationship.
In the context of granular systems, marginal rigidity is a new state of solid matter and this
begs the question whether cellular solids and solid foams are also in this state.

The paper is structured as follows: Section 2 presents an argument that leads to the
conclusion that the stress field in cellular networks at equilibrium can be determined from the
loading and the microstructure alone, independent of any strain-stress information. Section 3
formulates a one-to-one mapping between planar trivalent cellular networks and marginally
rigid assemblies of grains. Section 4 describes the derivation of the constitutive equation and
section 5 concludes with a brief discussion of the results and some of their implications.

2. The stress field can be determined independently of stress–strain relations

In this section it is shown from first principles that the stress field can be determined from
statics alone. The argument is slightly different for general trivalent networks, where the
cell walls meet at arbitrary angles, and for Plateau networks. Therefore these two cases will
be treated separately throughout the paper. In the following we model a cellular solid by a
collection of vertices at given positions in the plane, which are connected by cell walls whose
thickness is much smaller than the size of a cell (a dry foam). These cell walls may be straight
lines or curved as a consequence of the process that has given rise to the microstructure and
with which we are not concerned in the present discussion.

2.1. General networks

Consider a planar open-cell trivalent cellular network that is at mechanical equilibrium under
a set of external forces, �g, acting on its boundaries and which consists of N cells. The loading
gives rise to tension (or compression, which will be regarded in the following simply as
negative tension) in the cell walls and to torques on the vertices of the network. The former
are balanced by forces along the cell walls, while the latter must be balanced by forces that
are normal to the walls. By Euler’s theorem2 for N � 1 a cell has on average six neighbours
and, since each cell wall is shared by two cells, there are altogether 3N cell walls. Each vertex
in the network is the meeting point of three walls and each wall connects two vertices and so
there are exactly 2N vertices. This enumeration neglects boundary effects, which introduce
corrections of order O(1/N), but which can be readily included into the argument that follows
and therefore do not affect its generality.

2 This is a direct result of Euler’s theorem which relates the number of cells, faces and edges in a planar network and
it is believed to have been proved by him circa 1750.
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Figure 1. The mapping from an asymmetric trivalent cellular network onto an assembly of rough
grains. The original cellular network is shown in dashed lines. The midpoints of the cell walls are
joined to form triangles around each vertex (black circle). The grains of the equivalent granular
assembly are centred on the vertices with the corners of the triangles representing contacts between
neighbouring grains. Two such virtual grains in contact are shown. The contact forces between
neighbouring grains are defined as those on the original cell walls. Each grain is in contact with
three neighbours and therefore the granular assembly is exactly at the marginal rigidity state.

Let us draw around each vertex a triangle whose corners are located at the midpoints
of the walls that branch from it (e.g., triangle ABC in figure 1) and let us imagine that the
edges of these triangles are made of rigid struts. Each of the 2N triangles is in contact with
three neighbours and the contact points are considered rigid so that the triangles cannot rotate
relative to each other around them. Two triangles in contact exert a force on each other whose
two components are defined to be the tension along the wall and the force normal to the wall
that contributes to balancing the torques on the vertices due to the external loading. Within
this description there are no torques on the contact points (which may result, for example,
from a finite thickness of the cell walls). Thus defined, the triangles form a rigid frame that
transmits the same forces and moments as the original cellular structure. There are 3N contact
forces and therefore, to determine the intercellular forces, one needs to solve for 6N unknowns
altogether.

How many equations are available to determine these? The triangles are at mechanical
equilibrium and so each must obey two equations of force balance and one equation of torque
balance. Multiplied by the 2N vertices, this gives 6N equations, exactly enough to determine
all the forces. The balance equations depend only on the details of the microstructure and on
the external loading. It follows that the intercellular forces can be uniquely determined from
statics alone.

2.2. Plateau networks

In Plateau trivalent networks the cell walls meet at each vertex at angles of 2π/3, a structure
that abounds in nature and man-made materials. In contrast to the general case, force balance
at every vertex dictates here that all the cell walls are under the same tension. This leaves the
normal force on each cell wall as the only unknown and the number of degrees of freedom
is reduced from 6N to 3N . We use the same construction as in figure 1, but instead of
considering the frame of triangles, let us regard it as consisting of a set of connected rigid



Stress transmission in planar disordered solid foams 2403

polygons, each enclosed inside a cell. These polygons connect to each other at the same
points that the triangles do, namely, at the midpoints of the cell walls. If we define the forces
transmitted between every two neighbouring polygons as the forces normal to the cell walls
at the midpoints, then this rigid frame supports the same stresses as the original system. Each
of the N polygons has to obey three balance equations, two of force and one of torque, which
gives altogether 3N equations, exactly enough to determine all the forces.

So, the intercellular forces in both general and Plateau networks can be derived from
statics alone and therefore these are isostatic systems. Now, the macroscopic stress is just a
coarse-grained continuous description of the discrete field of forces on the cellular scale. It
follows that since the latter can be determined without reference to compliance then so can the
continuous stress field. It is then evident that the second set of equations that complements the
balance conditions must arise from the structural characteristics alone. This observation has a
significant ramification: regardless of the precise form that the constitutive equations take, the
fact that the stress field equations involve no information on the stress–strain response means
that the stress transmission in cellular solids is governed by physical laws that are different from
conventional elastic solids.3 This basic realization appears to have been neglected in the large
body of literature on solid foams. Most of the work in the field employs stress–strain relations,
thus linking the stress to the displacement that occurs as the system approaches mechanical
equilibrium. The fundamental issue underlying the present analysis is that in planar cellular
solids the stress can be decoupled from any deformation. Thus, after all displacement has
stopped, the stress can be calculated from the microstructure and the boundary conditions
alone.

3. Mapping cellular networks onto granular assemblies

A planar trivalent foam can be characterized by the positions of all its vertices,vi , a connectivity
matrix that specifies which vertices are connected and the curvatures of the connecting walls.
The cell walls tesselate the system into a set of cells, ci . It is useful again to discuss separately
the mappings of general and Plateau networks.

3.1. General networks

Let us consider again the construction shown in figure 1 and note that, although the cell
walls may be curved, the edges of the constructed triangles are always straight. The above
enumeration of equations versus degrees of freedom implies that one needs 2N rigid bodies
and therefore suggests to centre the equivalent grains on the vertices. The contacts between
neighbour grains are at the midpoints on the cell walls between them where the respective
triangles touch. The force �f vv′ that is transmitted at the contact between the grains on vertices
v and v′ is defined to be identical to the cell wall at this point. Namely, it consists of the
tension along the wall, Tvv′ , and the orthogonal component Fvv′ that assists in balancing the
torques on vertices v and v′.4 The grains are considered to be static under the local forces
applied on them (i.e. of sufficient rigidity to support the forces without deformation), and of
sufficient roughness to prevent slip at any of the contacts under the intergranular forces. Note
that the sides of triangle v connect the contact points of the virtual grain centred on vertex v.

3 In fact, this statement extends to all theories that use deformation–stress relationship as constitutive input to solve
for the stress field.
4 Although the normal forces are distributed all along the cell walls, it is possible to show that these can be uniquely
represented by a localized force Fvv′ normal to the cell walls. Placing these forces at the midpoints of the walls can
be shown to introduce only a negligible error.
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3.2. Plateau networks

Using again the construction of figure 1, let us now place a virtual grain inside every cell
rather than around the vertices. The reason is that this system should provide 3N balance
equations, which can only come from N rigid bodies and N is exactly the number of cells. The
grains are again chosen to be sufficiently rigid to support the forces and the contacts between
neighbouring grains are at the midpoints of the cell walls. At the contact points the surfaces
of the grains are presumed to be normal to the 3N unknown forces, and tangent to the wall
directions. In contrast to the general case, the grains are supposed to be perfectly smooth
and so incapable of supporting tangential forces at the contacts. Thus defined, the cell wall
forces are mapped onto the normal forces that neighbouring smooth grains exert on each other.
The mean coordination number is six per grain, each of which is then associated with one
unknown—the force normal to the surface.

Before we continue it is worthwhile to comment that there is a marked difference between
real cohesionless granular assemblies and those described above. Real grains can only support
compressive forces and tensile forces take them out of mechanical equilibrium. In contrast,
cell walls can sustain either direction of forces. Correspondingly, the virtual assemblies
described here which cellular networks map onto can also have either type of forces between
the virtual grains.5 Although the original BB formalism has been developed for real systems
under compressive forces, it can readily accommodate an overall change of sign into tensile
forces.

4. The missing constitutive equation

This section derives the constitutive equation by adapting the BB theory to the context of
cellular solids. The derivation follows three main steps: first, the intercellular forces are
described in terms of a new reduced set of forces that satisfies the force balance conditions.
Second, the new forces are represented in terms of a continuous force field. The third and final
step is to describe the stress as a function of the continuous field and apply the requirement of
torque balance to obtain the missing constitutive equation.

4.1. General networks

Starting from the construction shown in figure 1, let us introduce several definitions. First,
we assign directions to the sides of the triangles around the vertices so that every triangle
circulates its vertex anti-clockwise. Each side is now a vector, �r , that lies between a particular
vertex v and a particular cell c and can be uniquely indexed �rcv (see figure 2). We further
define the centroids of the cells as the mean positions of the wall midpoints. Finally, let us
define vectors �Rcv that extend from the centroid of triangle v to the centroid of a neighbour
cell c. The vectors �rcv and �Rcv form two self-dual networks, each edge of which intersects an
edge of the other.

Step 1. Each cell is assigned a force �f c that acts at the centroid of the cell. It is in terms of
the cell forces that we wish to parametrize the contact forces. Every contact sits between two
cells, e.g., the contact point between vertices v and v′ that is party to cells l and m in figure 3.
The force that triangle v exerts on triangle v′ is parametrized as

�f vv′ = �f l − �f m. (3)

5 It should be noted that depending on the boundary loading, the stresses developing in the rigid frame formed by
the �r-network would be either all compressive, or all tensile. For a proof of this statement see [12].
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Figure 2. The vectors �rcv and �ρcv shared between vertex v and cell c. �rcv connects two neighbouring
wall midpoints and is one edge in a clockwise-directed triangle around vertex v. The vector �ρcv

points from the centroid of triangle v to the centroid of cell c.
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Figure 3. The parametrization of the wall forces around vertex v′ in terms of its neighbouring cell
forces. �f vv′ = �f l − �f m is the force that triangle v exerts on triangle v′. The sign convention is
that �f l is positive because the directed loop formed by the vectors �r around cell l is toward triangle
v′ and vice versa for cell m.

The sign convention in equation (3) is such that �f c is positive when the directed loop formed
by the vectors �rcv around cell c is toward vertex v′ at the vv′-contact and vice versa for vertex
v. This parametrization achieves several aims: (i) by construction, �f v′v = �f m − �f l = − �f vv′

and therefore Newton’s third law is satisfied at every contact. (ii) The forces on each triangle
balance automatically. This can be verified by summing all the forces on triangle v′,

∑
v

�f vv′ .
Each of the cell forces �f l, �f m and �f n contributes to this sum exactly twice, once with a
positive and once with a negative sign and therefore this sum vanishes identically. (iii) The
number of degrees of freedom has been reduced from 6N to 2N , namely, to one force per cell.
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Figure 4. The discrete field of cell forces is made into a continuous force field �� by constructing
a piecewise linear triangular surface around each vertex. An example of such a surface for the
x-component of the cell forces around vertex v is shown. The corners of the triangular surface
are above the centroids of the cells l, m and n that are located at �rl , �rm and �rn. The heights of
the planar surface at these points are, respectively, �f x

l , �f x
m and �f x

n . The value of the surface above
the vertex gives ��v . In terms of the continuous field, the value of any cell force �f c, immediately
neighbouring vertex v, is exactly �f c = ��v + �Rcv · �∇ ��.

This coarse-graining corresponds to a reduction in the number of equations since the force
balance constraints have been now satisfied. Only one torque balance condition per triangle
remains, giving 2N equation to determine the unknowns.

Step 2. We now wish to continue the discrete cell forces into a continuous field, ��.
Regarding every cell force as located at the centroid of its cell, let us interpolate the three
forces around every triangle piecewise linearly. The interpolation consists of a planar triangular
surface whose corners are located above the centroids of cells l,m and n, and whose heights
are, respectively, �f l, �f m and �f n. The value of the continuous force field at the vertex v, ��v , is
the weighted mean of the cell forces around it, as illustrated in figure 4 for the x-component.
In terms of ��, the cell forces around vertex v can be presented as

�f c = ��v + �Rcv · �∇ ��. (4)

Step 3. In terms of the vectors �rcv and forces �f c, the force moment on triangle v can be
written as

Sij
v =

∑

c

ri
cvf

j
c (5)

where the sum runs over all the c-cells surrounding grain v. Substituting (4) into (5) and
observing that

∑
c �rcv = 0 gives

Sij
v =

∑

c,k

ri
cvR

k
cv∂k�

j = (Ĉv · �∇ ��)ij (6)

where

Ĉv =
∑

c

�rcv
�Rcv (7)

and the component notation has been suppressed. Ĉv is a fabric tensor that characterizes
the local geometry around vertex v and plays a crucial role in the following analysis. It is
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convenient to separate Ĉv into its antisymmetric part Avε̂ = (
Ĉv − ĈT

v

)/
2 and symmetric part

P̂ v = (
Ĉv + ĈT

v

)/
2, where Av is a prefactor and ε̂ = ( 01

−10

)
is the π/2 rotation tensor. Both

these parts have direct geometrical interpretations: Av = |�rcv × �Rcv|/2 is the area associated
with vertex v that is shown shaded in figure 2. The entire system can be conveniently tessellated
and covered by these areas, namely, Asys = ∑

v Av . This feature is useful for calculations of
effective volumes [13]. To identify the geometrical interpretation of the symmetric part, let us
rewrite the vectors �rcv and �Rcv in expression (7) in terms of the vectors �scv and �t cv shown in
figure 2. It is straightforward to show that P̂ v can be represented in the form

P̂ v = 1

2

∑

c

(�scv�scv − �tcv�tcv). (8)

The departure of P̂ v from zero around vertex v is a direct measure of how much the v triangle
is rotated relative to its immediate environment. For example, if for a particular self-dual pair
the vectors �r and �R are perpendicular then the symmetric part is exactly zero. Thus, this tensor
characterizes the rotational disorder around vertex v. Expression (8) makes it straightforward
to see that summing P̂ v over any patch of the system, the contribution from cells fully enclosed
inside the patch cancels out and the only non-vanishing contribution comes from boundary
terms. Thus, the average of the symmetric part over the entire system vanishes at least as fast
as 1/

√
N .

Consider now a small patch � with boundary ∂� that consists of several cells. The mean
stress inside this region is

σ� = 〈Ŝv〉�/A� = 〈Ĉv · �∇ ��〉�/A� (9)

where 〈· · ·〉� stands for an area average over the patch � and A� is its area. It has been shown
in [8] that

〈Ĉv · �∇ ��〉� = 〈Ĉv〉� · 〈 �∇ ��〉∂� (10)

where 〈· · ·〉∂� stands for an average over the boundary of �. Combining (9) and (10) we have

〈 �∇ ��〉∂� = 〈Ĉv〉−1
� A�σ̂� = ε̂−1σ̂� (11)

where the last equality uses the fact that the average of 〈Ĉv〉� = A�[ε̂ + 〈P 〉� ] and that the
average 〈P 〉 vanishes faster than 1/

√
N . We can now apply the yet unused condition of torque

balance to a small region in the system:

A{Ĉv · �∇ ��} = A{Ĉvε̂
−1σ̂ } = 0 (12)

where A{· · ·} stands for the antisymmetric part of {· · ·}. Separating Ĉv into its symmetric and
antisymmetric parts we obtain two equations: the first,

A {σ̂ } = 0

reassuringly yields the expected condition that the mean stress field is symmetric. The second,

A{P̂ ε̂−1σ̂ } = pxxσyy + pyyσxx − 2pxyσxy = 0 (13)

is new and gives the missing constitutive equation. By defining a rotated version of
P̂ , Q̂ = ε̂P̂ ε̂−1, this equation can be rewritten more compactly

Q̂ : σ̂ = 0. (14)

This new constitutive equation couples the stress to local fluctuations in the geometry of the
cellular structure and completes the set of equations for the stress field in planar systems. Just
like the tensor P̂ , Q̂ characterizes the local rotational disorder and it is this particular aspect
of the local geometry that the stress field couples to.
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Figure 5. The mapping from an assembly of smooth grains into a rough one with an equivalent
geometry. The grains are considered to be centred on the cells with the vectors �r connecting the
contacts points around each one of them. Making all the grains rough and inserting a vanishingly
small ball bearing (white circle) between touching grains at the contact maintains the original
intergranular forces.

4.2. Application to Plateau networks

As formulated above, the theory applies only to general networks whose cell walls meet at
arbitrary angles. This is because in general networks there are 6N degrees of freedom to
determine on the cellular level. This necessitates 2N rigid bodies for obtaining equations for
the balance of forces and torques, which are conveniently provided by the triangles around the
vertices. In contrast, loading a Plateau network gives rise only to 3N degrees of freedom on
the cellular level: the mean normal force on every cell wall. This then implies that we have
to use a mapping to assemblies of smooth grains that are located within the cells and which
transmit at each contact only force that is normal to the contact surface. The adaptation to
Plateau networks goes through the observation [8] that it is possible to extend the theory to
assemblies of smooth grains. This is done via a further mapping from assemblies of N smooth
rigid grains into assemblies of 4N rough rigid grains as follows: first, the original smooth
grains are assigned an infinite friction coefficient, making them rough and thus, in principle,
able to support tangential contact forces. Second, an infinitesimally small circular grain is
inserted at each contact point, as shown in figure 5. The function of these additional grains is
to act as ball bearings and so transmit only the normal forces between the original grains. This
preserves the directions and magnitudes of the forces in the original assembly (see figure 5).
The mean coordination number in the original system is six per grain giving 3N contacts
altogether. This means that there are 3N extra grains and the new assembly consists of 4N

grains all in all. The new system reproduces the original field of intercellular forces in the
smooth system in the limit when the radii of the ball bearings tend to zero. Let us make sure
that the number of equations still matches the number of unknowns: in the original system
there were 3N contacts, each of which corresponding to one unknown. In the ‘decorated’
system each contact point splits into two and so we have 6N contacts. Since each ball bearing
has two contacts then the force balance equations on them reduce to the condition that the



Stress transmission in planar disordered solid foams 2409

force at one contact point is of the same magnitude as the force at the opposite contact, but
opposite in direction. This immediately satisfies torque balance on the ball bearing. There
remain therefore the 3N equations of force and torque balance on the original grains, which
exactly take care of the 3N unknowns.

Now we have an assembly of rough grains for which the theory is valid and to which
equation (13) applies. Choosing the radii of all ball bearings to be the same, BB have shown
that the equation remains non-trivial when this radius tends to zero. This extends the theory
to assemblies of smooth grains and therefore to Plateau networks.

5. Conclusion, discussion and future directions

This paper has addressed the problem of determining the stress field in planar trivalent cellular
solids that are in mechanical equilibrium under an external loading. By comparing the number
of degrees of freedom to the number of available equations on the cellular level it has been
shown that the intercellular forces can be determined from statics alone, namely, in terms of
only the external loading and knowledge of the microstructure of the system. It has been
argued then that since the continuous stress field is only a coarse-grained description of
the discrete field of intercellular forces and since those can be determined independently of
material compliance, then the stress field must be independent of any stress–strain relations.
This led to the question what replaces the conventionalconstitutive equation of elasticity theory
in the determination of the stress field. To find the missing equation, a mapping has been
constructed between planar trivalent cellular networks and granular assemblies of infinitely
rigid grains at the so-called marginal rigidity state. General structures, where cell walls meet
at arbitrary angles, map onto assemblies of rough grains that are centred on the vertices of
the original cellular network, while Plateau structures, where cell walls meet at angles of
2π/3 everywhere, map onto assemblies of perfectly smooth grains that are enclosed inside the
original cells. The mapping enables the application of the Ball–Blumenfeld theory for stress
transmission in assemblies of rigid grains to solid foams. In particular, a constitutive equation
has been derived using this approach, which couples the stress to the local rotational disorder
of the cellular microstructure. This relation replaces the conventional stress–strain relations
and redefines the problem of structure–property relationship in these systems. The analysis
presented in this paper has several fundamental and practical implications, some of which are
listed below.

5.1. Fundamental issues

(i) Although the discussion here focused on comparison with elasticity, it should be
remembered that all conventional theories of stress transmission are based on constitutive
relations that link the stress to deformation. Elasticity employs strain while elastoplastic
and viscoelastic theories are based on relations to strain rate. By resorting to statics alone,
the theory developed here is therefore outside the existing paradigm altogether. It has been
shown by BB that the new formalism recovers the Airy stress function as the solution for the
symmetric divergence-free stress field. The fact that this solution, which is usually obtained
within conventional elasticity theory, can be derived without the use of any stress–strain
relation clearly demonstrates that these are redundant for determining the stresses that develop
in trivalent solid foams. This also means that there is a connection between the two approaches.
To see why such a relation must exist, suppose we apply an infinitesimally small strain to
a solid foam, of the type discussed here, at the end of which the medium settles into the
aforementioned isostatic state. Elasticity theory should be able to calculate the stress field just
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before this state is reached, while the new theory should be able to do so after all deformation
has ceased. The stress field cannot change discontinuously at the end of the infinitesimal
straining process and therefore both theories must yield the same answer in the limit when the
strain goes to zero. This issue is currently under investigation by this author and preliminary
results suggest that indeed there is a relation between the two theories.

(ii) As mentioned already, in the context of granular assemblies, when all the intergranular
forces can be determined from statics alone the system is in a marginal rigidity state [10, 14],
which is interpreted as a new state of solid matter. In granular assemblies, the basic condition
for being in this state is that the average coordination number per grain is three for rough
grains and six for smooth. The state of matter of any system can be determined by its response
to external mechanical loading: gases need to be held together by an external pressure, liquids
flow under stress and solids first deform and then transmit the stress statically. The difference
between the equations of stress transmission in marginally rigid assemblies and in conventional
solids implies different responses to external loading and hence, by definition, that these are
in different states of solid matter. In granular systems this new state lies between the fluid
and the traditional solid states. Adding more contacts between grains necessitates additional
constitutive information beyond the knowledge of the structure alone, while a reduction in
the number of contacts takes the assembly outside mechanical equilibrium and renders it
fluid. This feature of existence between two conventional states appears to have no immediate
analog in solid foams. It is possible that such an analog can be found in the context of the
rheology of foams close to the so-called jamming transition point. It is interesting to note that
in granular systems there is a direct relation between the constitutive equation (14) and the
dynamics of yield [15]. It would be interesting to try to extend this connection to the flow of
foams.

(iii) The basic principle of force determination on the cellular level without resorting to
the compliance of the cell walls does not appear to rely heavily on the two-dimensional nature
of the system. In fact, it is possible to extend this argument to open-cell foams where each
vertex is the meeting point of four edges and six walls, a rather ubiquitous class of structures
in nature. This suggests that the stress field in such three-dimensional systems should also be
independent of stress–strain relations and therefore there is a larger class of solid foams that
are at a state of marginal rigidity.

5.2. Practical issues

(i) First and foremost, this theory will clearly make it possible to model disordered
planar cellular materials to predict stress transmission, extending the current capabilities.
In particular, the theory should make it straightforward to predict ‘hot spots’ of stress
concentration in such systems and make useful connections between the occurrence of hot
spots and the microstructure. This knowledge is expected to both improve prediction of failure
in advanced materials and set new goals for the design of microstructural characteristics that
prevent such vulnerability.
(ii) The formal mapping between granular assemblies and cellular systems can be used to
transfer results between the two fields. Granular assemblies can only approach the marginal
rigidity state under careful consolidation processes [10]. In contrast, it is quite common
for the dynamics of formation of foams to give rise to triple junctions and so drive the
structure naturally to this state. Moreover, once a foam has solidified its structure is set, while
granular assemblies are fragile by the very nature of this state. This difference means that
most measurements in granular assemblies are plagued by large fluctuations, while foams are
amenable to more conclusive experimental observations. Therefore, this mapping creates a
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formal gateway between the two systems and makes it possible to carry out experiment on one
type of systems in order to learn about the other.
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